PATH VI: a pathsearch method for variational
inequalities

Michael C. Ferris
(Joint with Youngdae Kim and Todd Munson)

University of Wisconsin, Madison
Funded by DOE-MACS Grant with Argonne National Laboratory

Computational Contact Mechanics: Advances and Frontiers in
Modeling Contact February 17, 2014

Ferris (Univ. Wisconsin) PATH VI Banff, February 2014 1/35



VI: —F(z) € Ne(2)

Ferris (Univ. Wisconsin)

Many applications where F is not the derivative of some f

PATH VI
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Variational Inequality Formulation
e F:R" = R"
o lIdeally: C C R" — constraint set
@ Often: C C R"” — simple bounds

0€ F(z)+ Ne(z2)

@ VI generalizes many optimization problems: LP, MCP, and LCP
For Nonlinear Equations: F(z) =0 set C = R"

For NCP: 0 < F(z), z>0and z" F(z) =0 set C=R"

For LCP, set F(z) = Mz + g and C =R’

For MCP (rectangular VI), set C = [/, u]".

Example: convex optimization first-order optimality condition:

vV vy vy VvYy

rznelg f(z) <= —Vf(z) € Ne(z) <= 0¢€ Vf(z)+ Ne(z)

» For LP, set F(z) =Vf(z)=pand C={z | Az=a, Hz < h}.
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AVI over polyhedral convex set
An affine function

F:R"—=>R", F(z)=Mz+q, MeR™" geR"
A polyhedral convex set

C={zeR"| Az(>,=,<)a, I<z<u}, Ac R™"
Find a point z* € C satisfying

(F(z"),y —z*) >0, WyeC
(&) (—F(z"),y —z") <0, VyeC
(&) —F(z") € Ne(z%)

where
Ne(z*) = {v | v,y —z") <0,¥y € C}
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Variational inequalities (current state)

@ Find z € C such that
0€ F(z)+Ne(z)

e model vi / F, g /;
empinfo: viF z g

@ Convert problem into complementarity problem by introducing
multipliers on representation of e.g. C ={z € [/,u] : g(z) < 0}

[F(z) — Vg(2)A

g(z) :| +-/\/—[I7u]><]R{T

@ C polyhedral (e.g. C={z € [l,u] : Az< a} and F(z) =Mz +gq
M —AT] [z q
4 S [o)
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Theorem

Suppose C is a polyhedral convex set and M is an L—matrix with respect
to recC which is invertible on the lineality space of C. Then exactly one of
the following occurs:

o PATHAVI solves (AVI)

@ the following system has no solution

Mz + q € (recC)P?,  zeC. (1)

Corollary

If M is copositive—plus with respect to recC, then exactly one of the
following occurs:

e PATHAVI solves (AVI)

@ (1) has no solution

Note also that if C is compact, then any matrix M is an L—matrix with
respect to recC. So always solved.
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Experimental results: AVI vs MCP

PATH is a solver for MCP (mixed complementarity problem).
@ Run PathAVI over AVI formulation.
@ Run PATH over AVl in MCP form (poorer theory as recC larger).
@ Data generation

» M is an n X n symmetric positive definite/indefinite matrix.
> A has m randomly generated bounded inequality constraints.

PathAVI PATH % negative

(m, n) status | # iterations | status | # iterations | eigenvalues
(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80
(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80
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Complementarity Problems via Graphs

0 )\

T = Ne, = (®e x {0})U ({0} x B_)

—yeT(\) < (\,—y)eT < 0<A1Ly>0

By approximating (smoothing) graph can generate interior point
algorithms for example yA =¢,y, A >0

—F(z) € Npn(2) <= (2,-F(2)) €T" <= 0<z 1L F(2)>0
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Complementarity Systems (DVI)

() = F(x(t), \(¢))

y(t) = h(x(t), A(1))
0<y(t)y LA(t)>0

PATH VI



Complementarity Systems (DVI)

& (1) = f(x(1), (1)) N

4 X 0 X 0 X
——————— ~1 — — |1

Relay Relay with dead zone

saturation
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Complementarity Systems (DVI)

& (1) = f(x(1), (1)) N

4 X 0 X 0 X
——————— ~1 — — |1

saturation Relay Relay with dead zone
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Operators and Graphs (C = [-1,1], T = N¢)

zi=-1,—-F(z)<0orz e (-1,1),—F(z)=0o0rz,=1,—F;(z) >0

~ A A
1 1,
S T 0 y y
I — A 1
TN T y) (Z+T) ') =Pr(y)

P7(y) is the projection of y onto [~1,1]
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Generalized Equations

@ Suppose T is a maximal monotone operator
0e F(z)+7(z) (GE)

o Define Pr=(Z+7T)!

e If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then Py is piecewise affine (continous, single-valued,
non-expansive)

0€F(2)+T(z) <= zeF(2)+Z(2)+T(2)
= z—-F2)e(Z+T)(z) = Pr(z—F(2))=z

Use in fixed point iterations (cf projected gradient methods)
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Normal Map

@ Suppose T is a maximal monotone operator
0e F(z)+T7(z) (GE)

o Define Pr = (1 +T7)7!
0€F(z)+T(2) ze F(z2)+Z(z) + T(2)

z—F(z)=xand x€ (Z+T)(2)

z—F(z)=xand Pr(x) =z

Pr(x) - F(Pr(x)) = x

0 = F(Pr(x)) + x — Pr(x)

1reey

This is the so-called Normal Map Equation
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Key idea of algorithm 7 = N

Homotopy: Easy solution for yu large, drive yu — 0.

pr = F(me(x())) + x(p) — me(x(1))

Define z(u) = me(x(w)), then

pr = F(z(p)) + x(1) — z(n)

X—z € Ne(z)

Ne(z) ={-ATu—w+v}

such that Az(>,=,<)a L u(>,free, <)0
0<w L z—1>0
0<v L u—z>0
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Ray start and complementary pivoting
Solve the normal map by
@ Computing an extreme point z. € C by solving Phase .
@ Introducing a ray with a covering vector r in the interior of the
normal cone at z.
© Setting up an initial basis for complementary pivoting using the result
of Phase I.
@ Doing complementary pivoting until the multiplier on r becomes zero.

~(Mz+q)+pur = -ATu—w+v
Az(>,=,<)a L u(>,free,<)0
0<w L z—1>0
0<v L u—z>0
uw >0
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Example (complementary pivoting)

w=[ 53] =[], e
=15

'
I/
1’

X3 = (57 9)7 z3 = (47 5)
"
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Implementation

@ Solve Phase | over C using CPLEX.

minimize 07z
z
subjectto Az =a

I1<z<u

» We have included slack and artificial variables.
» Thus, rank A= m.

@ Do complementary pivoting (Lemke's method) until a feasible
solution or a secondary ray is found.
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Large scale implementation: Computing an extreme point

No extreme point exists when C has a non-zero lineality space

nnczker[ . ] £ {0}

(H encodes bounds.) In that case, we compute a boundary point of C.

@ Computing a boundary point of C

» Zero out linC and compute an extreme point over reduced space.

Zero out linC \
, extreme
c — > c points

linC = linC’' = {0}
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Solving Phase |

If feasible region of C is not empty, then CPLEX comes with a basis triple

(B, N;, N,) with B = Ag nonsingular such that
e B=(Bi,...,Byn) C{1,...,n} : indices of basic variables
e N={1,...,n}\B : indices of nonbasic variables
o NiN N, =0,NUN, ={j ¢ B : xj neither fixed nor free},
l; > —oo for j € Ny and uj < 400 for j € N,
o Ng={j€N:zfree} and N, = {j € N : z fixed}.

@ Note that zZN, = /NI,ZNU = UN,, ZN; = OaszX = /fo = UNg,, and
zg = Bil(b — ANZN)-
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Phase | result interpretation (when 3 an extreme point)

If N; = 0, then lin C = () and Phase | gives us an extreme point.

@ z € Cis an extreme point if z=az+ (1 — @)z for 0 < @ < 1 and
z,z2 € C implies that z =2z = 2.

e zeCisaBFSif {A;:/j <z < uj} are linearly independent.
@ z € (CisaBFSif and only if it is an extreme point.

e Ng = () implies z is a BFS, hence an extreme point of C.

@ Existence of an extreme point implies that lin C = ().
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Phase | result interpretation (when 7 extreme points)

If N, # (0, then lin C # () and Phase | gives us a boundary point.
@ Define z = (Z,2) where 2 = z,. Fix 2 =0.
@ Then we have a solution to the following Phase |.
minimize 07z
z
subjectto Az =a
I <z<u
z=0
@ Z is a BFS in the reduced space of C where 2 = 0, thus an extreme
point in that space.
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Initial basis setup for starting Lemke's method

From Phase I, we have a nonsingular B
Az O }
B =
Phasel |: AZB _]II

where
A : the set of indices of active constraints

7 : the set of indices of inactive constraints

So that Ay4p is nonsingular.
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Initial basis setup for starting Lemke's method
We need to solve a system of equations using complementary pivoting.

(Mz+q)—pur = ATu4+w—v

Az—s = a
0<s L u>0
o0<w L z—1>0
0<v L u—z>0
eN(ZPhaseI)
thfr:@v
Mgg —ALB 0 0 0 zZB
Mg —-Al, —IL 0 0 U
Blemke = | Mus —Aly, 0 Iy 0 |,Bvars=| w
AuB 0 0 0 0 VU
Aig 0 0 0 —Ij s 1
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Initial basis setup for starting Lemke's method

If Ng, # 0,
Mpgg
Mg
BLemke = MUB
AuB
Ais

Mge
Mir
Muyr
AaF
ALF

_AAB

_AAL

~Alu
0
0

0
—I
0
0
0

0
0
ly
0
0

o O O o

[
—

, Bvars =

ZB
zF
ua
wi
vu
SA

If M is invertible in the lineality space of C, then the above matrix is

invertible.
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Initial pivoting

Solve
MBB *ALB 0 0 0 B —qas — MB[_Z[_ — MBUzU
Mg _A.ZL —Ip 0 0 Uy —qr — My zp — Myyzy
Mys —AlL, 0 Iy O we | = | —qu — Muyrzr — Myuzy
AAB 0 0 0 0 Vu bA _AALZL —AAUzU
Aig 0 0 0 —Ij; S bi—AzzL—Azyzu

o Note that zg and sz are feasible due to Phase I.

o If any of u4,w;, or vy is infeasible, then make r basic by increasing
so that all of them become feasible.

_Aig 0 0
r= Z _A;’L— + Z —1; + Z 0 S NC(ZPhase I)
icA —AL iel 0 ieu | i
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Experimental results (LPs)

Some promising results:

Data set # iterations (Lemke) | Total elapsed time (secs)
PathAVI PATH PathAVI PATH
25fv47 3938 3202 0.608037 1.788112
bnll 592 3230 0.084005 0.616039
pilotnov 3046 > 10,000 | 0.668043 | > 7.456466
scfxm3 988 4129 0.140008 1.064067
woodlp 336 1325 0.216013 7.120446
woodw 1292 9878 0.652040 | 27.145696

Table : Solving LP (linear programming) problems using PathAVI and PATH

(netlib data sets)
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Experimental results (symmetric psd QPs)

Data set # iterations (Lemke) | Total elapsed time (secs)
PathAVI PATH PathAVI PATH
cvxqpl-M 340 1063 0.076004 0.532033
dualc8 4 39 0.008000 0.008001
gscagr2b 240 868 0.020001 0.052004
gscfxm3 1072 2021 0.160009 0.504031
gship12l 1399 3246 0.524033 1.188074
cont-101 99 750 18.049127 | 118.071378

Table : Solving QP (quadratic programming) problems using PathAVI and PATH,
Q is symmetric and PSD

@ QP problems were taken from “l. Maros, Cs. Meszaros: A Repository
of Convex Quadratic Programming Problems, Optimization Methods
and Software, 1999
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Experimental results (unsymmetric pd M)

Data set # iterations (Lemke) | Total elapsed time (secs)
PathAVI PATH PathAVI PATH

bnll 657 > 10,000 | 0.136008 | > 26.065629
capri 296 571 0.016001 0.100006
fitld 1346 1839 0.156010 0.232014
scsd8 1414 2155 0.936058 3.152197

scfxm3 823 2262 0.212014 5.736358

wood1lp 413 915 0.288018 1.440090

Table : Solving AVI problems using PathAVI and PATH, M is unsymmetric PD

@ M was randomly generated using MATLAB.
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Conclusions

@ Treat feasible set C and N explicitly leads to stronger theory

@ Ensure feasibility C # ), and F only evaluated over C

@ Works when VF is not symmetric

@ Can implement theory in large scale setting and get robustness (avoid
rank deficiency in initial basis, high accuracy)

o Faster

@ Auvailable (subroutine or within GAMS/EMP) - requires CPLEX

Embed AVI solver in a Newton Method for VI

Preprocessing incorporated

Each Newton step solves an AVI

Hot start critical

Nonmonotone pathsearch, watchdogging (another talk)

>
>
>
>
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Splitting Methods

@ Suppose T is a maximal monotone operator
0e F(z)+T7(z) (GE)

@ Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

o Alternatively, can split F(z) = A(z) + B(z) (and possibly 7 also) so
we solve solve (GE) by solving a sequence of problems involving just

Ti(z) = A(z) and Ta2(z) = B(z) + T(2)

where each of these is “simpler”

o Forward-Backward splitting:

Zk+1 = (I + CkT2)_1 (I — Cle) (Zk) s
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Normal manifold = {F; + Ng,}

(Relative) interiors of faces F;
form partition of C
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C ={z|Bz > b}, Nc(z) = {B'v|v <0, v,y = 0}

Mz + B'v
Mro(x) + x — mo(x) z € F;
v S O,'UI(Z) =0
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C ={z|Bz > b}, Nc(z) = {B'v|v <0, v,y = 0}

Mz + B'v
By By || e

v S O,'UI(Z) =0
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C={z|Bz> b}, F(z) =Mz +q

| By Mp.— M. |




Cao/Ferris Path (Eaves)

@ Start in cell that has interior
(face is an extreme point)

@ Move towards a zero of
affine map in cell

o Update direction when hit
boundary (pivot)

@ Solves or determines
infeasible if M is
copositive-plus on rec(C)

@ Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear
But algorithm has exponential complexity (von Stengel et al)
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